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Turbulence characteristics of the boundary layer on 
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Measurements of the boundary layer on an effectively infinite rotating disk in a 
quiescent environment are described for Reynolds numbers up to Resz = 6000. The 
mean flow properties were found to resemble a ' typical' three-dimensional crossflow, 
while some aspects of the turbulence measurements were significantly different from 
two-dimensional boundary layers that are turned. Notably, the ratio of the shear stress 
vector magnitude to the turbulent kinetic energy was found to be at a maximum near 
the wall, instead of being locally depressed as in a turned two-dimensional boundary 
layer. Also, the shear stress and the mean strain rate vectors were found to be more 
closely aligned than would be expected in a flow with this degree of crossflow. Two- 
point velocity correlation measurements exhibited strong asymmetries which are 
impossible in a two-dimensional boundary layer. Using conditional sampling, the 
velocity field surrounding strong Reynolds stress events was partially mapped. These 
data were studied in the light of the structural model of Robinson (1991), and a 
hypothesis describing the effect of cross-stream shear on Reynolds stress events is 
developed. 

1. Introduction 
Three-dimensional boundary layers are a common feature of engineered flow 

systems and their properties often limit the performance of practical devices, making 
the behaviour of these boundary layers of paramount importance in design. A three- 
dimensional boundary layer is a wall-bounded shear flow in which the mean velocity 
direction varies continuously with distance from the wall. In a three-dimensional 
boundary layer both components of velocity vary with distance from the wall, and both 
components of vorticity parallel to the wall are significant. Intuition suggests that a 
highly chaotic and three-dimensional phenomenon like boundary-layer turbulence 
would not be strongly affected by mean flow three-dimensionality as pointed out by 
Bradshaw (1970). However, a wealth of evidence shows that the turbulence structure 
is strongly affected by boundary-layer skewing. Conventional turbulence models fail 
and the present understanding of three-dimensional boundary-layer turbulence is 
insufficient to derive more appropriate models. 

The two types of three-dimensional boundary layers of interest for this study are 
shown in figure 1 .  In figure 1 (a) a pressure-driven three-dimensional boundary layer is 
shown with the X-direction aligned with the free-stream velocity. Such a boundary 
layer is produced when the flow is deflected by an obstacle. The spanwise component 
of the pressure gradient turns the slow fluid near the wall through a greater angle than 

t Present address : Shell Development Company, Houston, Texas. 
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FIGURE 1. Schematic of three-dimensional velocity profiles: (a) pressure driven, (b) rotating disk. 

the free stream, resulting in a skewed profile across the boundary layer. The no-slip 
condition is enforced at the wall so the crossflow forms a peaked velocity profile with 
a maximum crossflow velocity away from the wall. Figure l (b)  shows the three- 
dimensional boundary layer which forms on a rotating disk in a stationary cylindrical 
coordinate system. The fluid outside the boundary layer is still and the surface moves 
underneath it. The fluid close to the surface feels a centrifugal force in proportion to 
its tangential velocity, and is flung outward. The no-slip condition acts on this crossflow 
also, and again forces a peaked velocity profile to develop in the radial direction. This 
situation is analogous to the pressure-driven boundary layer described above, with the 
pressure gradient replaced by the centrifugal force. 

The natural coordinate system of a disk flow is cylindrical, and we will use the right- 
handed system ( r ,  $, y) .  We will take advantage of the circular geometry to cancel out 
all derivatives of mean quantities in the $-direction. However, most boundary-layer 
work is reported in a Cartesian coordinate system, so in order to facilitate comparison 
with previous experiments, the measured velocity components will be denoted 

(Ur,  U@ UJ = (- w, - U, v. 
This choice is a result of the desire to have positive U-velocity in the rotating frame 
with positive rotation 52, and is shown in figure 2. 

Experiments examining three-dimensional boundary-layer turbulence are still rare. 
The first set of experiments to produce Reynolds stress measurements used a relaxing 
three-dimensional turbulent boundary layer (3DTBL) produced by a flat plate yawed 
at 45", studied by Bradshaw & Terrell (1969). They discovered that even though the 
three-dimensionality was rather mild, the vector formed by the Reynolds stresses in the 
plane of the wall was not aligned with the mean flow gradient vector.? This finding 
invalidates the concept of a scalar-eddy viscosity. The forward-facing, 45" swept step 
reported by Johnston (1970), and the 'infinite' swept wing experiments of van den Berg 
et al. (1975) and Bradshaw & Pontikos (1985) showed the same behaviour. More 
important perhaps are changes in the Townsend structural parameter or A, .  This 
parameter, defined as the ratio of the shear stress vector magnitude to twice the 
turbulent kinetic energy, is found to have a value 0.14-0.15 for two-dimensional 

t Generally in three-dimensional boundary-layer research a coordinate system is chosen with the 
y-coordinate normal to the wall. The two significant shear stress components u'u' and D'W' then form 
a vector in the plane of the wall as do the two strain rate components dU/dy and d Wldy. 
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FIGURE 2 .  Coordinate systems used for present study. 

boundary layers under quite broad circumstances. The 'infinite' swept wing 
experiments indicated that A ,  was considerably depressed from the two-dimensional 
value, especially near the wall. These two effects seem to be the common thread in 
3DTBL's before they are driven to separation. 

Dechow & Felsch (1977) described extensive measurements of an 'obstacle-type' 
flow, composed of a right cylinder on a flat plate. The shear stress angle and velocity 
gradient angle were seen to deviate strongly. It was found that the shear stress lags the 
velocity gradient until separation is approached, where the shear stress begins to clearly 
lead the velocity gradient. This result was supported by the experiments of Muller & 
Krause (1979) and Fernholz & Vagt (1981), which were also driven to separation. 
Anderson & Eaton (1987, 1989) described the flow of a initially two-dimensional 
turbulent boundary layer (2DTBL) around either a 90" or a 60" included-angle edge. 
The results show that A ,  decreases more rapidly with the more sudden and stronger 
three-dimensionality caused by the 90" wedge. The effect seen was clearly shown to be 
one of a drop in A ,  near the surface, with a subsequent diffusion outward of the effect. 
The eddy viscosity was strongly anisotropic, and comparison with other experiments 
led to the conclusion that experiments involving rapid skewing saw a much sharper 
drop in eddy viscosity ratio than those with slow turning. 

In attempting to explain the Reynolds stress changes, Bradshaw & Pontikos (1985) 
postulated that the relative reduction of shear stress magnitude in three-dimensional 
boundary layers is due to the eddies being tilted out of their preferred orientation by 
the rate of change of aW/ay. It was inferred that the large eddies in a two-dimensional 
flow are the most efficient structures for extracting kinetic energy from the mean flow, 
i.e. the most efficient producers of shear stress. Shizawa & Eaton (1991), noting that 
the strongest changes in A ,  occurred near the wall, chose to investigate the interaction 
of longitudinal vortices with a three-dimensional boundary layer. It was shown that the 
disturbance in the velocity contours of the boundary layer is strongly dependent on the 
sign, or sense of rotation of the vortex. Eaton (1991) hypothesized that the same 
mechanism (although at a much smaller scale) may also be active in naturally formed 
streamwise vortices in the near-wall region. Streamwise vortices of one sign would be 
ineffective at producing low-speed streaks, leading to a decrease in the formation of 
shear stress generating events. 
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In addition to the physical experiments, there are now available a few direct 
numerical (full Navier-Stokes) simulations exploring the effect of three-dimensionality, 
reported by Spalart (1989), Coleman, Ferziger & Spalart (1990), Moin et al. (1990), 
Bradshaw & Sendstad (1990), and Sendstad & Moin (1991). The flow of Spalart (1989) 
showed no clear trend of shear stress direction compared to mean velocity gradient 
direction, a result that was taken to be a consequence of the near-equilibrium 
condition. The experiments of Coleman et al. showed deviations of A,,  and both 
leading and lagging of the shear stress direction in relation to the velocity gradient, 
depending on the height in the boundary layer. The last three computational studies 
showed that reductions in Reynolds shear stress and turbulent kinetic energy were 
observed as a result of a drop in production combined with an increase in dissipation. 
These effects were stated to be the result of the breakup of near-wall structures such 
as velocity streaks. Streamwise vortices are convected in the spanwise direction, 
breaking the original streaks. The vortices with the same sign as the developing 
streamwise vorticity were weakened. 

It is difficult to draw general conclusions from the sum of the previous experiments 
because they are all complicated by extraneous effects such as streamwise pressure 
gradient and spanwise inhomogeneity. It is generally agreed that the misalignment of 
the shear stress and strain rate vectors is an effect of rapid turning of the flow. 
However, there is disagreement on the cause of the relative reduction in magnitude of 
the shear stress. Some investigators believe that this is also an effect of the rapid turning 
while others think that it is a general effect of a three-dimensional strain field. 
Experiments and simulations examining the structure of the turbulence are at such an 
early stage that there is at present no consensus regarding structural modifications. 

The flow over a rotating disk was chosen for the present study, to address some of 
the concerns expressed about previous experiments. The analysis of the turbulence data 
is considerably simplified using the disk geometry. The disk rotates in a quiescent 
environment so there are no externally imposed pressure gradients, and the flow is 
axisymmetric so only two space coordinates are needed to describe the mean flow. 
Also, variation in the radial direction is very small, and can usually be neglected except 
near transition. The mean flow develops substantial skewing across the boundary 
layer; at its peak the crossflow reaches 11 YO of the local disk speed, so the three- 
dimensionality must be considered a major feature of the flow. 

There are key differences between previously studied 3DTBL’s and the disk 
boundary layer. First, the three-dimensionality is present continuously; it does not 
develop from an initially two-dimensional boundary layer. This is important for 
investigating structural differences between 3DTBL’s and 2DTBL’s, since the 
modification of two-dimensional structures is not an issue. Secondly, the turbulence 
may reach an equilibrium with the imposed three-dimensional strain field. Finally, the 
rotation which drives the flow adds Coriolis effects to the basic equation set, both 
complicating analysis and possibly modifying the turbulence itself. 

The laminar flow field above an infinite rotating disk was first considered by von 
Karman (1921), who deduced that the flow could be described by a similarity solution. 
Experimental velocity profiles measured on finite disks agree well with the predictions. 
The laminar flow field has a crossflow (radial) profile with an inflexion point, which is 
unstable and eventually breaks down into turbulent flow (cf. Kohama 1987; Wilkinson 
& Malik 1985; and Kobayashi, Kohama & Takamadate 1980). 

Early work on turbulent disk flows was performed by Goldstein (1935), Theodorsen 
& Regier (1944), Gregory, Stuart & Walker (1955), Cobb & Saunders (1956), and Case 
(1966). The most comprehensive study to date for an ‘infinite’ disk flow was published 
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by Cham & Head (1969). They reported single hot wire and Pitot probe surveys for 
Re = 2000000, with local Reynolds number defined as 

Re = Q r 2 / v .  

Integral boundary-layer calculations and an isotropic eddy viscosity calculation of the 
crossflow profiles both showed good agreement with the experimental data. Erian & 
Tong (1971) acquired mean velocities, turbulent intensities, and one Reynolds shear 
stress for a turbulent disk flow. They employed a questionable hot-wire technique 
which included aligning a single wire with the circumferential direction in order to 
measure cross-stream velocity fluctuations, almost certainly yielding erroneous 
readings. Cebeci & Abbott (1975) published results of a calculation of the disk flow 
using isotropic eddy viscosity, which compared well with those of Cham & Head for 
mean velocity and skin friction, but did not match well with those of Erian & Tong for 
the crossflow near the wall. 

In an experiment related to the flow over an infinite rotating disk, Itoh et al. (1990) 
studied an enclosed disk with a shroud at the periphery and a stationary facing disk at 
a small separation s/R = 0.08. The direction of the shear stress vector was found not 
to coincide with the mean velocity gradient vector, in agreement with previous three- 
dimensional boundary layer experiments. The Townsend structure parameter was near 
0.15 near the disk, but fell slowly as height increased. 

Summarizing the existing state of knowledge of three-dimensional boundary layers 
we find that high-quality experiments have been performed on a number of different 
geometries. Generally observed trends are that the shear stress is suppressed relative to 
the turbulent kinetic energy and that when the free stream turns monotonically, the 
shear stress vector lags behind the strain rate. The reasons for these trends have not 
been satisfactorily explained and inferences about the turbulence structure have been 
based entirely on single-point statistical measurements. For the three-dimensional 
boundary layer on a rotating disk the mean flow behaviour is well understood but even 
the single-point turbulence measurements are incomplete. 

The objectives of the study are to document the turbulence structure over an 
‘infinite’ rotating disk through the acquisition of detailed mean velocity data and 
turbulence measurements up to third-order quantities. An important question is : Are 
the commonly observed effects of three-dimensionality still present when a boundary 
layer develops as three-dimensional from its inception? The disk flow should be large 
enough that the turbulence is in equilibrium with the three-dimensional strain field 
unlike previous experiments in which the three-dimensional boundary layer developed 
by distorting a two-dimensional boundary layer. In addition, the turbulence structure 
was studied using multipoint measurements. The objective was to gain some insight 
into the differences in the turbulence structure between two- and three-dimensional 
boundary layers. In this case we take as the baseline the extensive body of work on two- 
dimensional boundary-layer structure. This work is not reviewed here; the reader is 
referred to the recent review of Robinson (1991). 

2. Facility and experimental techniques 
The experiments were performed on a 1 m diameter disk rotating on a vertical axis 

in a nominally quiescent environment. A cast aluminium tooling plate disk was 
machined to a finished thickness of 15 mm and lapped to a surface finish of 10 pm. The 
disk was mounted on a vertical spindle that was driven at speeds up to 1500 r.p.m. The 
vertical runout was measured at a radius of 0.48 m using a dial indicator. The runout 
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of & 15 pm was in the form of long-wavelength variation on the disk and a slight cyclic 
rise and fall with a period of several rotations due to imperfections in the roller 
bearings. The horizontal runout was measured to be less than f 2 5  pm. 

The disk apparatus was mounted in a 2.4 x 2.7 x 3.4 m isolation cell. A fixed annular 
apron approximately 0.3 m wide surrounded the disk to eliminate any interaction 
between the boundary layers on the top and bottom surfaces. The bottom surface ran 
in a closed cavity to avoid creating any disturbance in the test cell. A set of 14 spiral- 
shaped vanes were mounted on the upper surface of the apron to remove the angular 
momentum of the flow leaving the disk. No significant swirl was observed in the test 
cell with the vanes in place. 

The computer-controlled probe traverse was mounted on a 1 x 4 in. steel beam 
located 1 m above the disk surface and isolated from the disk carriage to eliminate 
vibrations. The probe traverse could rotate the probe about a vertical axis in 0.9" 
increments and traverse the probe normal to the disk with a resolution of 1.6 pm. All 
experiments were conducted remotely to minimize disturbance of the flow. 

The mean flow velocity and direction were measured using three redundant 
techniques : a three-hole probe, a single hot-wire probe and a custom dual-wire probe. 
The three-hole probe was used in a non-nulling mode as described by Anderson & 
Eaton (1987). The dynamic and differential pressures were measured using Setra model 
239 (& 1.0 in. H,O range) or a model 264 (0-10 in. H,O range) pressure transducers 
calibrated against a micromanometer before each run. Corrections for both the effect 
of mean shear on the effective probe location and the effect of wall proximity on angle 
measurements were applied. Both these corrections were calibrated by matching the 
data to the analytical solution for the laminar boundary layer. The angular uncertainty 
of the three-hole probe was quoted by Anderson & Eaton (1987) as f 1.0". The 
uncertainty in velocity was given as f 0.2 m s-l which would decrease in magnitude for 
the very low velocities at the edge of the boundary layer, although the percentage 
uncertainty would certainly increase. 

The single-wire probe used a Dantec 55P05 boundary-layer tip strung with Dantec 
gold plated 5 pm platinum-coated tungsten wire with an active length to diameter ratio 
of l /d = 250. This probe was used to determine the velocity and the angle of the flow 
by yawing it to several different angles in a procedure similar to that of Cham & Head 
(1969). The procedure was performed automatically under computer control and 
resulted in an uncertainty of f 1.5". A second probe with two wires in the same plane 
parallel to the wall was built to provide redundant measurements. Construction details 
and the calibration procedure are described in Littell & Eaton (1991 b). The uncertainty 
was found to be the same as for the single wire and the measurements from the two 
probes agreed to well within the uncertainty estimate at every measurement position. 

Turbulence data were measured using a miniature single-wire probe and a set of 
cross-wire probes. The single-wire probe used 2.5 pm platinum-coated tungsten wire 
which was copper plated and subsequently etched for an active length to diameter ratio 
of Z/d = 220. The probe size was selected following the recommendations of Ligrani & 
Bradshaw (1987). The measurement volume of dimension 1' = 35 at Re = 650000 
should give relatively small errors in turbulence statistics at the yf distances reported 
here. The crosswire probes were custom built to use the 2.5 pm wire with a wire spacing 
of 0.35 mm, following dimensional guidelines shown in the literature to yield the most 
accurate results. These design parameters were used to build the most compact 
crosswire probe possible which would have truly negligible blockage and interference, 
a necessity for the highly turbulent flow on the disk. The crosswires could be rotated 
about their axes in 45" increments allowing determination of all six Reynolds stresses. 
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Uncertainty Error from 5" 
Quantity (aligned) misalignment 

- u 3 %  o f V  1 %  o f U  
U'Z 5 %  Of 4% of .'" 
- d2 5 %  of .'" 4 %  of ." 
W f 2  5 %  O f C  4 %  of u12 

~ u'v' 10% of a 7.5% of ulul 
ulw' 15% Of* 8.5% of 
u'w' 10% of U ' d  7.5% of ulvl 

TABLE 1.  Crosswire uncertainties from Anderson & Eaton (1987) 

__ 

The hot wires used were all run in constant-temperature mode by a TSI IFA-100 
unit, or in the case of the two-point correlations, one crosswire was run by a pair of 
Dantec 55M01 units. After DC shifting and amplification, the signals were low-pass 
filtered with a Frequency Devices model 901F1, usually with a corner frequency of 
29.9 kHz. A temperature-dependent calibration was obtained by varying both the 
temperature and velocity and fitting King's law in a modification of the temperature 
correction suggested by Cimbala & Park (1990); a complete discussion is given in 
Littell & Eaton (1991 b). The effective wire angles were found by assuming cosine 
response and yawing the probe in the calibration jet as described in Westphal & Mehta 
(1984). The total uncertainty of the mean velocities measured by the hot-wire methods 
was estimated to be < 2 %  near the disk, and would be expected to rise significantly 
in the intermittent region of the outer boundary layer owing to free convection effects 
from the hot wire which would be indistinguishable from a velocity measurement. 

The uncertainties in the measured turbulence quantities are the same as quoted by 
Anderson & Eaton (1987) near the wall where the turbulence intensity is similar to flat- 
plate boundary-layer values. These are summarized in table 1. These uncertainties are 
expected to rise rather quickly with distance from the wall, and to have perhaps 
doubled in most categories by a turbulence intensity of 40 %, which translates as 
y /6 ,  z 5. The increased uncertainty was estimated based on a simulated crosswire 
response following the general methodology of Tutu & Chevray (1975) (see Littell 
& Eaton 1991b). Comparison of their assumptions to the actual measured quantities 
suggests that the Tutu & Chevray analysis is somewhat pessimistic in the present 
situation. 

The data acquisition and control system consisted of an IBM PC-AT and a 
Metrabyte DAS-20 12 bit A/D card equipped with a SSH-4 simultaneous sample and 
hold. The computer was used to control the speed of the disk and the motion of the 
traverse, and to acquire, analyse, and store the various measurements of interest. 

3. Mean velocity 
Mean velocity data taken with a hot wire are shown in figures 3(a)  and 3(b)  for 

several Reynolds numbers. Three-hole probe data agreed closely so are not shown 
here. Figure 4 shows a 'polar' plot of the crossflow velocity versus the streamwise 
velocity as measured by the hot-wire techniques. The plot suggests a weak effect of 
Reynolds number on the crossflow profile at a given radius. Similar, but much 
stronger, trends were observed in the rapidly skewing flow studied by Anderson & 
Eaton (1987, 1989). In that flow the crossflow increases owing to the sustained pressure 
gradient but the location of the peak also moves towards the higher streamwise 
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FIGURE 3. (a) Turbulent mean flow vector magnitude in the rotating reference frame as measured by 
the hot-wire probes. (b) Crossflow profile measured by the hot wires in turbulent regime. Symbols on 
this and subsequent figures are defined in table 2.  
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Y+ 

FIGURE 5. Tangential velocity plotted in wall coordinates for the rotating coordinate system. 

velocity. Driver & Johnston’s (1990) experiment in which a shear-driven 3DTBL is 
relaxing back to a two-dimensional layer shows the same effect. The Squire-Winter 
(1951) theorem relates the crossflow profile in the outer part of the boundary layer to 
free-stream skewing angle from purely kinematic considerations. This relationship is 

(1) 

where a is the angle through which the original free stream has been turned. This 
equation describes the amount of crossflow developed by inviscid skewing of the pre- 
existing spanwise vorticity. The peak crossflow velocity would occur at the wall by (1) 
but is limited by the no-slip condition and thus occurs above the wall. The crossflow 
momentum deficit is continuously diffusing outward, so if the skewing stops then the 
peak must progress outward too. The shear-driven flow of Driver & Johnston (1990) 
exhibits this behaviour. The disk flow differs in that its three-dimensionality is being 
forced continuously, but not with an increasing skewing angle. This gives us a chance 
to look at the motion of the peak crossflow in a three-dimensional flow that is close to 
equilibrium. The peak is not scaling on inner variables, since its height increases, or at 
least stays the same, in figure 3 (b)  as the Reynolds number increases. The establishment 
of outer scaling is not indicated, since the total thickness of the boundary layer is 
difficult to measure experimentally owing to the very low velocities at the edge of the 
boundary layer. 

The tangential mean velocity profile is plotted in semi-log coordinates in figure 5 
with the conventional two-dimensional law of the wall: 

W / U ,  = 2 4 1  - U/U,), 

U+ = 2.441ny++5.0. (2) 

Also shown is the Van Driest model for the buffer region. The vector magnitude of the 
velocity was also plotted in wall coordinates, and is virtually indistinguishable from 
figure 5.  The only real difference between these data and those of a high-Reynolds- 
number 2DTBL is the lack of a wake component. In a 2DTBL the absence of a wake 
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Symbol R(m) 

+ X  0.235 

0.356 
0 
0 0.421 
0 
n 
0 

Symbol 

+ X  1660 

2660 
0 3840 

0 2640 
0 3900 
n 4970 
0 6070 

Re 

400 000 

650000 
940 000 

650 000 
1 000 000 
1 300 000 
1 600000 

H 

U ,  (m s-l) 

26.1 

28.2 
41.0 

23.7 
36.7 
48.1 
59.1 

G 

4, (mm) 
11.6 

19.2 
20.0 

21.0 
20.6 
20.4 
21.4 

UT (m s-l) 

1.34 5.52 1.21 

1.29 5.06 1.26 
1.27 4.97 1.75 

1.30 5.18 1.05 
1.28 5.19 1.56 
1.27 5.12 2.00 
1.27 5.22 2.39 

TABLE 2. Disk flow turbulent cases 

8, (mm) 
0.98 

1.46 
1.46 

1.71 
1.64 
1.59 
1.61 

VlU, (P-4 
2.8 

2.3 
8.9 

4.6 
9.9 
7.7 
6.6 

would signal the presence of a streamwise favourable pressure gradient. The disk 
cannot support a pressure gradient in the tangential direction, so the cause of the lack 
of a wake is unclear. Streamwise profiles of Cham & Head (1969) were plotted in wall 
coordinates, and likewise do not exhibit a conventional wake, but seem to have either 
a very short log region or a different slope than the two-dimensional law of the wall. 
Senoo & Nishi (1972) described a pressure-driven endwall flow which was turned 
through a large angle to investigate the properties of an equilibrium 3DTBL. Their 
data showed absolutely no wake component in the equilibrium region, and they 
concluded that this indicated a lack of reliance on the upstream flow properties. In the 
disk flow, the vertical component of velocity, V, is negative with an estimated value of 
0.6% of U based on the entrainment measurements of Cham & Head (1969). This 
downflow would tend to increase the strength of the wake by bringing outer-layer fluid 
towards the wall, but clearly the logarithmic region dominates and suppresses the 
formation of a wake. 

Several common integral parameters and descriptors of the mean tangential flow are 
given in table 2. These were calculated using an analytic integration of a natural cubic 
spline fit to the experimental data, with the Van Driest model inserted below y+ = 50 
in order to extend the measurements to the wall. Owing to the relatively small 
crossflow, the same data for the vector magnitude profile are not significantly different. 
A constant value of the Clauser shape factor G means that the outer region of the 
boundary layer is self-similar and, by the data in table 2, it appears the disk boundary 
layer is such an ‘equilibrium’ flow with G z 5.2. A flat-plate boundary layer exhibits 
G = 6.6-6.8; a higher value indicates adverse pressure gradient, and a lower value 
indicates favourable pressure gradient. 

4. Turbulence characteristics 
The Reynolds stresses were acquired using the crosswise probe aligned with the 

previously measured mean flow angle at each measurement position and subsequently 
transformed into the disk frame of reference. Figure 6 shows all three normal stresses 
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FIGURE 6. Normal Reynolds stresses us. Y/S, at Re = 650000. 
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at a single Reynolds number to indicate the relative magnitude of the components. The 
abscissa is scaled by 6, instead of S,, because the latter is very difficult to measure in 
this flow. The tangential friction velocity u, obtained from the log-law fit is used to scale 
the ordinate. Streamwise turbulent fluctuations measured by the crosswire were 
somewhat lower than those measured by a single hot wire, but agreed to within the 
accuracy given in table 1. The single-wire data cannot be transformed into the disk 
coordinate frame so they are not shown in figure 6. 

The trace of the Reynolds stress tensor, q2, equal to twice the turbulent kinetic 
energy is shown in figure 7. In many 3DTBL studies which involve turning an initially 
two-dimensional boundary layer the turbulent kinetic energy is seen to decrease with 
increasing three-dimensionality. In this flow the three-dimensionality is applied 
constantly, which may explain why the normalized value of q2 is constant with 
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increasing Reynolds number. A small shift with Reynolds number is not ruled out, at 
least with the scaling employed, but since the momentum-thickness Reynolds number 
more than triples it is probably a safe conclusion that the turbulent kinetic energy in 
the outer region of the disk boundary layer is not changing significantly with Reynolds 
number. 

The primary Reynolds shear stress -m is shown in figure 8. For two-dimensional 
boundary layers this shear stress generally extrapolates to the wall shear stress; this has 
a value of 1.0 on this ordinate. It is often assumed that the shear stress is constant 
across the log region for zero-pressure-gradient boundary layers. In fact, the shear 
stress actually decreases slowly; Klebanoff (1954) measured a shear stress value of 
0.8%' at y / 6  = 0.2. In the present study the shear stress decreases much more rapidly: 
-u'Y' is less than 0 . 5 ~ :  at y / 6  = 0.2 ( y /6 ,  z 2). Even smaller shear stress values were 
found by Itoh et af .  (1990) in a study of a shrouded disk. The present results also differ 
considerably from previous studies of pressure-driven 3DTBL's. Most of these flows 
exhibit a peak in the shear stress well away from the wall. This effect cannot be ascribed 
only to an adverse pressure gradient, but is also a sign of a structural change in the 
turbulence. The primary shear stress in this flow is seen to be unlike either a 2DTBL 
or other 3DTBL's, suggesting major differences in the structure to be discussed more 
fully below. 

The secondary shear stress --, also normalized by the friction velocity, is shown 
in figure 9. This quantity is identically zero in a 2DTBL. The present measurements 
show &? to be almost constant in the region where the crosswire could acquire data, 
but it must change sign closer to the wall in order to approach the spanwise wall shear 
stress. These measurements resemble previous 3DTBL experiments plotted in free- 
stream coordinates. The data of Itoh et al. (1990) show basically the same nearly 
constant -m stress layer as seen here. ~ 

The third shear stress component, u'w' is also non-zero in 3DTBL's. This stress 
gradient is generally neglected in the boundary-layer approximations for the velocity 
components parallel to the wall since it is usually much smaller than gradients of the 
other two shear stresses. The derivative of this term with respect to radius was 
evaluated and found to be more than two orders of magnitude smaller than the 
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Symbol Experiment Flow typeldesignation 

A Anderson & Eaton (1989) Obstacle, Case I St 4 
D Dechow & Felsch (1977) Obstacle, St 4 
P Bradshaw & Pontikos (1985) Infinite wing, X = 1092 
R Driver & Johnston (1990) Shear driven, St 9 
E Elsenaar & Boelsma (1974) Infinite wing, X = 1095 

TABLE 3. Reference experiments 

derivative of u/vI with respect to the wall normal, in the near-wall region, and at least 
a factor of 20 smaller at Y/S, = 7. For this reason it does not play a significant role in 
the mean velocity profile development, and will not be shown here. 

Previous experiments on 3DTBL's have shown that dimensionless structural 
parameters used in closure models for the Reynolds stresses may be strongly modified 
from typical 2DTBL values. The present measurements are compared to other types 
of 3DTBL's in the following paragraphs. The data sets selected for comparison are 
listed in table 3. This set includes each of the three major categories of 3DTBLs : infinite 
swept wing, obstacle, and shear driven. The choice of coordinate system is often 
important in such comparisons. It is natural to select one coordinate direction normal 
to the wall, but the orientation of the other axes is relatively arbitrary in 3DTBL's. For 
this reason, the structural parameters which prove most useful are those that are 
invariant to rotation about the wall normal. 

A commonly investigated structural parameter is the ratio of the vector magnitude 
of the shear stress to twice the turbulent kinetic energy: 

( u " 2  + m2); 

q2 
A ,  = 

This parameter is approximately constant at 0.15 in a 2DTBL even when the layer 
is distorted by a pressure gradient, except very near the wall under an adverse pressure 
gradient. The wind tunnel experiments plotted in figure 10 show the typically observed 
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FIGURE 10. Structural parameter A ,  us. Y/S,  for reference 3DTBL studies listed in table 3. 

FIGURE 11. Structural parameter A ,  us. Y/S, for present study. 

trend that three-dimensionality depresses A, near the wall, and this depression diffuses 
outward. Figure 11 indicates a different behaviour in the disk flow, showing A ,  to 
decrease almost linearly with distance from the wall for the inner radii, and at least 
monotonically for the outer radius. Similar results were found in the direct numerical 
simulation of an Ekman layer by Coleman et al. (1990). Examining the flow at the pole 
of a sphere they found a peak value of A ,  equal to 0.12 close to the surface, falling with 
a constant slope to 0.065 at the edge of the Ekman layer. The strong attenuation of A ,  
suggests that irrotational (inviscid) motions dominate the outer region of the disk 
boundary layer. It must be pointed out that the present outer-region measurements 
may be subject to large errors according to Tutu & Chevray (1975), which could 
account for part of the effect seem on A,.  

One might suspect that the outer region of the boundary layer is dominated by 
Coriolis effects. The Reynolds stress transport equations for a rotating coordinate 
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FIGURE 12. Eddy viscosity ratio N,. 

system show that Coriolis effects act to redistribute the Reynolds stress among the 
various components of the tensor. If the outer region were dominated by Coriolis 
effects, then w' and u' fluctuations must be negatively correlated. However, the 
correlation coefficient f o r m  was calculated and is strongly positive in the outer layer, 
indicating that Coriolis effects are not a major factor. This then supports the 
conclusion that the outer region is dominated by irrotational (inviscid) motions, a 
conclusion also supported by Cham & Head's (1969) measurement of reduced 
entrainment. 

It is often found in three-dimensional boundary-layer experiments that the eddy 
viscosity is not isotropic, that is 

~ ~ 

- u'w' - u'w' *- a w p y  a u / a y .  

As a measure of this inequality, the ratio of the eddy viscosities can be written as 

where y f s  is the angle of the local mean velocity, yg is the angle of the velocity gradient 
vector, and y, is the shear stress vector angle. Clearly, the choice of coordinate system 
is important here. In this case we have referenced all angles to the free stream velocity 
direction. The values obtained for N ,  are shown in figure 12. These data exhibit more 
scatter than most of the other plots because they contain derivatives of experimental 
data. As concluded by Anderson & Eaton (1989), low values of N ,  (as low as 0.2) are 
observed in sharply turned experiments such as shear-driven or obstacle flows, and a 
value closer to unity is seen in slowly turned flows like the infinite wing. This implies 
that the disk flow more closely resembles a slowly turned flow or equivalently one that 
has more time to relax to a new state after the imposition of crossflow. The values near 
unity indicate that an isotropic eddy viscosity should perform well, and this was indeed 
the case for a simple crossflow calculation for the disk flow reported by Cham & Head 
(1969), and a more involved calculation by Cebeci & Abbott (1975). 

7 FLM 266 
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FIGURE 13. Prandtl mixing length us. typical two-dimensional behaviour; Y = 0.421. 

A mixing length for three-dimensional boundary-layer turbulence may be defined as 

This mixing length is thus invariant to rotation of the coordinates about the wall 
normal direction. Figure 13 shows the mixing-length distribution across the disk 
boundary layer plotted along with the commonly used correlations for 2DTBL’s. The 
mixing length falls well below the standard log-region correlation, 1 = 0.41y, again 
illustrating the suppression of shear stresses in this flow and the absence of a constant 
stress layer. The pressure-driven experiments from table 3 deviate from the 2DTBL 
correlations in the same way as the present data and in particular asymptote to mixing 
lengths well below 1/6 = 0.09. Suppressed mixing length and a thinned constant-stress 
layer thus appear to be common features of pressure-driven 3DTBL’s. 

Dissipation lengthscales were calculated from the data and the models of Bradshaw, 
Ferris & Atwell (1967) and Hunt, Spalart & Mansour (1987). Detailed comparisons are 
presented in Littell & Eaton (1991b). These corroborate the conclusion that 
lengthscales are reduced by three-dimensionality and indicate that the turbulent kinetic 
energy budget is similar to that of a 2DTBL, while the shear stress is modified by three- 
dimensionality. 

Some insight into the differences between 2DTBL’s and 3DTBL’s may be obtained 
by examining the terms in the Reynolds stress transport equations. It is appropriate to 
examine the present data using cylindrical rotating coordinates but we have chosen 
here to write the equations with the more familiar Cartesian velocities and axes to 
facilitate comparison with other flows. Some of the terms in these equations resulting 
from the cylindrical coordinate system are negligible for this large radius, but are 
included here to retain the generality of the equation set. The derivatives of mean 
quantities with respect to the tangential direction are identically zero, and certain terms 
are neglected by order of magnitude arguments in the usual fashion. In the equations 
below, the terms are grouped into sets in the usual way as described in Littell & Eaton 
(1991 b). 
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The dissipation group is evaluated here as the difference of the other terms. In 
making this approximation is must be recognized that the pressure diffusion and the 
pressure strain terms (0 in the q2 equation) that are not dissipative are included, since 
these are likewise not measured. The viscous diffusion term is simply neglected. 

The terms involving derivatives of the data were computed by smoothing the 
experimental results as described in Littell & Eaton (1991 a), while the measured 
quantities that appear in the equations were not smoothed. Terms involving derivatives 
in the radial direction were calculated to be two orders of magnitude less than the 
typically retained terms, and were neglected. 

The transport balance of the primary shear stress for a Reynolds number of 1 300000 
is shown in figure 14(a). The values are normalized by 6/u: where 6 = 6,/0.097. The 
data are plotted with a gain in -z positive, and a loss negative. If these are compared 
with typical 2DTBL shear stress balances, such as the direct Navier-Stokes calculation 
of Spalart (1988), it is apparent that the production of -n is concentrated much 
nearer the surface, indicating that the outer region is dominated by inactive motion. A 
clear structural feature noted in the numerical data is an increase in turbulent diffusion 

1-2 
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FIGURE 14. Transport equation balance for (a) --, (b) -m and (c) turbulent kinetic energy 
at Re = 1300000 normalized by S/u,3. 
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in the outer region which peaks at Y/S z 0.5. An almost imperceptible rise was seen 
in the disk flow dataset near the halfway point in the boundary layer, but is so small 
as to be almost lost on the axis. This discrepancy is at least partly due to the 
unmeasurable pressure fluctuation components in the turbulent diffusion, which are 
relatively more important in the outer region and are included in the numerical results. 

Specifically relevant to this flow are the Coriolis redistribution terms and their effect 
on the evolution of the Reynolds stresses. As seen in the transport equations above, the 
rotation tends to provide a path by which the two important shear stresses can trade 
places. The value of -a was shown earlier to be generally much larger than -v”. 
This means that the ‘trading’ afforded by the Coriolis terms is unbalanced, with -n 
losing much more than it gains from --. These motions are of course not ‘lost’ or 
‘gained’, but are merely redirected by the Coriolis effect, which is only a deflecting 
force and does no work. The direct rotation terms are thus seen to be small in 
comparison with the production and dissipation, suggesting that the timescale of 
rotation is much longer than that of the production and dissipative motions. A similar 
conclusion was reached by Spalart (1989). It would be a mistake to dismiss the rotation 
as irrelevant, because it also affects the development of each term in the stress transport 
equation, thus its effects are indirect. The direct rotation effect is small in the region we 
could measure, and it is likely that as the wall is approached the turbulent timescales 
get even smaller, suggesting the production and dissipation will continue to dominate 
the transport equation for --. 

The transport balance of the secondary, or cross-stream shear stress is shown in 
figure 14(b). This is plotted on an expanded scale relative to the -m balance. Here 
the Coriolis term is shown to be much more significant. If the measurements were to 
extend closer to the wall where aFV/dy passes through zero and -- changes sign, a 
dramatic change would be seen. The production term must pass through zero while the 
rotation term does not. Therefore, at the peak in the crossflow profile, the only positive 
term in the --u/wI balance comes from the Coriolis redistribution of - u’d. Instead of 
the - rotation and the production augmenting each other to increase the magnitude of 
--zi’w’, the rotation will resist the formation of the shear stress needed to smear out the 
cross-stream velocity gradient. Thus the rotation would tend to allow a steep velocity 
profile near the wall by cutting down on the turbulent transfer of momentum. The dip 
seen in the production of Y/6, z 1.5 and a simultaneous decrease in turbulent diffusion 
seem to be real trends since they involve several points. These particular terms have 
uncertainties in the same order as the Reynolds stresses and are results of both mean 
and fluctuating measurements which were obtained with two different probes. 

The remaining transport equation to be considered describes the development of 
twice the turbulent kinetic energy, shown in figure 14(c). Also shown on this plot is an 
empirical formula for the dissipation which is of the form 

which Bradshaw & Pontikos (1985) showed to do well in the two-dimensional section 
of their experiment, but to underpredict the dissipation in the three-dimensional 
section. It likewise badly underpredicts the dissipation in the disk flow, probably 
because of structural changes over the entire boundary layer compared with the two- 
dimensional case. Comparison of the measured quantities with 2DTBL’s and the 
3DTBL of Bradshaw & Pontikos (1985) show the disk production to drop off much 
closer to the wall than the others. The same quick drop was seen in the 3DTBL 
simulation of Spalart (1989). 
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From these measurements it seems clear that the disk boundary layer is dominated 
by the near-wall region, and that in the outer region inactive motions are perhaps even 
more prevalent than in 2DTBL’s. _ _ _  This was highlighted by the monotonic drop in A,  
and the trend seen for the ratio ( u ’ ~  + w ” ) / d 2 ,  which clearly rises through the boundary 
layer while both 2DTBL’s and other 3DTBL’s fall monotonically away from the wall. 
These suggest that while there is no lack of turbulent motion, the mean transport of 
momentum by the Reynolds shear stresses is somehow curtailed. 

It remains to address the cause of the reduced level of shear stress in the disk 
boundary layer. Bradshaw & Pontikos (1985) hypothesized that turbulent eddies 
formed in a two-dimensional boundary layer are tilted out of their preferred 
orientation by the imposition of three-dimensional skewing. Implicit in their discussion 
was the assumption that normal boundary-layer turbulence would eventually develop 
if the three-dimensional strain field remained constant for a long enough distance. 
Anderson & Eaton (1989) theorized that the turbulence is stabilized in the region of 
peak turbulence production by the presence of crossflow. Eaton (1991) took this 
further, stating that production is reduced because a fraction of the low-speed streaks 
in the boundary layer are eliminated by the crossflow and because longitudinal vortices 
are attenuated by the crossflow. Implicit in this argument is the assumption that 
boundary-layer turbulence developed in a three-dimensional strain field is inherently 
less efficient at extracting energy from the flow field. The present results support the 
latter hypothesis. The value of A ,  is suppressed below normal two-dimensional levels 
even though the entire boundary-layer development occurs in a nearly constant three- 
dimensional strain field. 

5. Two-point correlations 
Two-point velocity measurements were acquired to gain insight into the structural 

causes of reduced shear stresses in 3DTBL’s. It is generally agreed that hairpin (or half- 
hairpin) vortices are important if not dominant features of 2DTBL’s contributing 
much of the shear stress especially close to the wall. Our working hypothesis is that the 
structure is similar in the disk boundary layer with distortions accounting for the 
observed changes in the Reynolds stresses. Therefore, we have interpreted the two- 
point measurements in terms of the qualitative model presented by Robinson (1991). 
In a two-dimensional boundary layer, half-hairpins with either sign must be equally 
likely and two-point correlations with cross-stream separations must be symmetric or 
strictly antisymmetric. As will be seen below, asymmetries in the two-point correlations 
for the disk boundary layer give clues to the underlying structural modification. Quite 
extensive two-point measurements were acquired and are available in Littell & Eaton 
(1991 b). Those presented here are selected as the most useful in illustrating structural 
disturbances. 

Two-point velocity correlations have been documented by Grant (1958) and Tritton 
(1967) for the two-dimensional turbulent boundary layer, but none are available for a 
three-dimensional boundary layer. The two-point velocity correlation coefficient is 
most commonly defined as 

u’ u! 
Rij(r l ,r2,r3)  = - a (u;”)” (7); ’ 

where the subscript i refer to a velocity fluctuation at some point in space and the 
subscriptj refers to a velocity fluctuation at some other location displaced from the first 
point by the vector (r,,  r2, r3). 
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Recently, the full simulations of boundary-layer and channel flow have yielded 
complete maps of the velocity correlations, and an examination of a subset of these 
data provided by 0. Sendstad (1 99 1, personal communication) supports the findings of 
the physical experiments. Notably, the structures seem to be about four times longer 
than they are wide in the spanwise direction for wall-normal and streamwise velocity 
correlations. 

Two crosswires mounted on a common stem with variable separation were used to 
acquire all the two-point velocity data to be presented here. The probe was constructed 
with a 4” angle between the axis of each crosswire and the midline to allow a smaller 
separation between the measurement volumes of the crosswires than if they were 
parallel. The midline was aligned with the mean flow direction so the separation was 
normal to the laboratory streamline direction, but was not normal to the streamlines 
in the rotating reference frame. Since the correlations to be studied are seen in two 
dimensions to be much longer in the streamwise than the spanwise direction and 
because we effectively have a ‘flying’ hot wire, it was decided to make do with the few 
degrees of non-perpendicularity in the rotating coordinate system. This course of 
action also circumvents possible sources of error due to having one crosswire slightly 
ahead of the other in the laboratory frame. The measurements to be reported were all 
acquired at a height of 1.641 mm with separations ranging from 1.0 to 15.0 mm. The 
‘outboard’ side of the stationary probe is in the positive radial direction and conversely 
the negative side of the stationary probe will be called ‘inboard’. Data were taken at 
Re = 650000 and Re = 1 300000 to check for Reynolds-number effects. 

A check of the data accuracy is to examine the effect of separation on quantities 
measured by each probe individually. The values measured by each probe for the one- 
point correlation R,, as a function of separation compared very well with that 
measured by a single probe, implying that systematic errors due to interference were 
insignificant. Higher-order statistics also agreed well, further supporting this 
conclusion. 

Measurements of R,, and R,, are omitted here for brevity. Generally the results 
agree with the previous measurements of Grant (1958) and Tritton (1967). The present 
measurements of Rll. were almost identical to those given by Tritton (1967) but the 
scales of motion implied by R,, have a somewhat larger spanwise extent than Tritton’s, 
probably due to the different heights used. The R,, measurements of Tritton disagree 
with those of Grant (1958), whose R,,(O, 0, r )  does not show a negative region at any 
height. The present R,, measurements show a negative region, but obviously cannot be 
used to substantiate Tritton because of the three-dimensionality. 

Figure 15 shows R,, at a height of 1.641 mm for two Reynolds numbers. Here a 
positive separation is in the direction of the crossflow (radially outward), and the solid 
symbols on the ordinate are from the Reynolds stress measurements made with a single 
crosswise in an earlier test. Redundant measurements using different probe orientations 
are also shown. Immediately apparent are the large symmetry and the difference in 
scale on each side of the stationary probe. This asymmetry is impossible in a two- 
dimensional boundary layer, but is quite clear for this three-dimensional flow. 
Comparison with Tritton (1967) implies that the strong dip on the negative axis is 
present in the two-dimensional boundary layer, and the lack of a dip on the positive 
axis is the effect of three-dimensionality. The R,,. and R,, correlations generally 
support the existence of asymmetry, but are not definitive; see Littell & Eaton (1991 b). 
Asymmetry provides direct evidence of structural modification by the three- 
dimensionality. The cause of this asymmetry is discussed below. Correlations involving 
the w’ component of velocity, namely R,, and RZ3, were also measured, both of which 
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asymmetry due to three-dimensionality. 

are required to be antisymmetric in a 2DTBL. These quantities both showed 
asymmetry, but the cause was unclear. 

FIGURE 15. R,,(O,O, Y) for Y = 1.641 mm which equals at zero separation and shows strong 

6. Conditionally averaged velocity fields 
Since we are most interested in structural changes that affect the development of 

Reynolds shear stresses, it appears most advantageous to study the two-point velocity 
correlations conditioned on a high level of shear stress. That is, we are looking at the 
average velocity field in the neighbourhood of a high-shear-stress event. In the 
discussion to follow we must be very clear of our nomenclature. An ejection is defined 
in the usual way as wall fluid moving outward, and a sweep as outer-layer fluid moving 
down. Examining the disk flow in laboratory coordinates, the wall fluid has a high 
value of u. Therefore plotting a velocity measurement in the usual way with u‘ on the 
abscissa and u’ on the ordinate, an ejection is a quadrant-1 event and a sweep is a 
quadrant-3 event. 

in the form of 
a joint probability density function weighted by the value of each event’s product u’u’. 
These data were computed using a subset of the results of the two-point measurements 
for Re = 650000 at a height of 1.641 mm. It can be clearly seen that the ejection and 
the sweep events contribute much more heavily to the mean than the other two 
quadrants. Events falling in the areas defined by the curves u’u’ 2 2 ~ : ~ ~ u ~ ~ ~ ,  will be 
considered relatively strong sweeps or ejections, as discriminated from events which do 
not contribute strongly to the Reynolds stress m. Using this criterion, about 4.5 % of 
the total number of events were identified as energetic ejections and about 2.4 % of the 
total were strong sweeps. 

In addition to conditional sampling based on either a strong sweep or a strong 
ejection, the state of the flow field when a simple vertical motion of either sign was 
detected was also investigated. The condition used for this was that lu’l exceed 2/24,,. 
These will be referred to as ‘rising’ or ‘sinking’ flow, and by figure 16 it can be seen 
that the ejection and sweep conditions can be thought of as restricted versions of the 
rising and sinking conditions respectively. 

Figure 16 shows the distribution of contributions to the value of 
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The main subject of interest is the structure that produces Reynolds shear stress in 
the log region, which for a two-dimensional wall-bounded shear flow is likely to 
resemble the half-hairpin shown by Robinson (1991). The feature of this structure most 
easily identified by two-point velocity measurements separated in the spanwise 
direction is the closely spaced upward and downward motion on either side of the 
trailing neck vortex. A measure of how effective the structure may be at rearranging 
boundary-layer fluid could be deduced from the streamwise velocity distribution. As 
the various plots are introduced in the following sections, a few simpler structural 
models which preceded Robinson (1991) will be discussed to test their applicability in 
this flow. 

6.1. Upward motion 
Figure 17 (a) shows the average vertical motion surrounding a rising event, normalized 
by the r.m.s. of the unconditioned wall-normal velocity fluctuations. Each of the plots 
of this type are scaled using the pertinent r.m.s. quantity, with the values at zero 
separation given in the caption for reference. Just as the correlation coefficients were 
seen to asymptote to zero at large separations, these averages will approach zero as the 
separation increases. This plot shows a striking symmetry which suggests the equal 
probability of sinking flow at some small separation (3 mm) in the Re = 650000 case. 
This implies the presence of an equal number of positively and negatively signed 
longitudinal vortices producing an upward flow detected as the rising event, and 
downward flow on the other side of their cores. The pattern found in the Re = 1300000 
case is also symmetric, but does not have the strong dips seen for the lower Reynolds 
number, an indication of some kind of scaling with Reynolds number for this quantity. 
Since the total boundary-layer thickness is almost constant while the viscous 
lengthscale has been halved by raising the Reynolds number from 650000 to 1300000, 



198 H .  S.  Littell and J .  K. Eaton 

-1 5 -10 -5 0 5 10 15 

Separation (mm) 

-15 -10 -5 0 5 10 15 

Separation (mm) 

FIGURE 17. (a) Average vertical motion around a rising event, showing symmetry or an equal 
likelihood of each sign of streamwise vortex. (b) Average streamwise fluctuations around a rising 
event, showing asymmetry due to unequal effect of each sign of streamwise vortex. 0, Re = 650000; 
A, Re = 1300000. Zero separation: (a) c] = 2.00, = 1.61; (b) c] = 0.82, A = 0.78. 
Y = 1.641 mm. 

(see table 2), a wall dependence of the structures causing a rising event might be 
inferred. 

Figure 17(b) shows how the streamwise velocity is modified on average when a rising 
event is detected. This implies that the vortices shown in figure 17(a) do not warp the 
u-contours of the boundary-layer fluid evenly. Even though both signs of longitudinal 
vortex exist and can produce vertical motion, they, or more precisely whatever 
structure they are part of, affect the boundary layer in an asymmetric fashion. No 
Reynolds-number effect is observed for this quantity, which undermines the existence 
of wall scaling for the rising event. 

When the condition is changed to a strong ejection event, the vertical and streamwise 
velocity averages take the form shown in figures 18(a) and 18(b) respectively. 
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FIGURE 18. (a) Average vertical motion around an ejection event, showing asymmetry due to unequal 
effect of each sign of streamwise vortex. (b) Average streamwise fluctuations around an ejection event. 
0, Re = 650000; A, Re = 1300000. Zero separation: (a) 0 = 1.97, A = 1.90; (b) 0 = 1.79, = 
1.77. Y = 1.641 mm. 

Interestingly, the situation described for the rising condition is nearly reversed with the 
asymmetry being exhibited by the vertical fluctuations and a much more nearly 
symmetric streamwise velocity distribution. Figures 17 (b) and 18 (a) dismiss the 
existence of any symmetric structure, or equal effects on the boundary layer of mirror 
images of some asymmetric structure including models based on full horseshoe or 
complete hairpin structures, Townsend's (1976) double cone rollers, and in general any 
symmetric pairs of streamwise vortices. The picture emerging is that an even 
population of each sign of longitudinal vortex exists, but that one sign is associated 
with a structure that is better at producing ejections. 
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FIGURE 19. (a) Average vertical motion around a sinking event, suggesting symmetry or an equal 
likelihood of each sign of streamwise vortex. (b) Average streamwise fluctuations around a sinking 
event, showing asymmetry due to unequal effect of each sign of streamwise vortex. 0, Re = 650000; 
A, Re = 1300000. Zero separation: (a) = - 1.80, = -0.55, Y = 
1.641 mm. 

= - 1.83; (b) 0 = -0.48, 

6.2. Downward motion 
Figure 19(a) shows the average vertical motion surrounding a sinking event, 
showing roughly the same behaviour as seen for the rising event, i.e. general symmetry 
suggesting equal probability of each sign of vortex. Also seen is the same sort of 
Reynolds-number effect which attenuates the overshoot at small separation from the 
condition event. 

Figure 19 (b) shows the conditionally averaged streamwise velocity fluctuations 
during sinking events. This implies that the vortices shown in figure 19(a) do not warp 
the u-contours of the boundary-layer fluid evenly, and an overshoot is noted on the 
outboard side of the event, while inboard contours just asymptote to the average of 
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FIGURE 20. (a) Average vertical motion around a sweep event, showing asymmetry due to unequal 
effect of each sign of streamwise vortex. (b)  Average streamwise fluctuations around a sweep event. 
0, Re = 650000; A, Re = 1300000. Zero separation: (a) 0 = - 1.63, A = - 1.67; (b) 0 = -1.68, 
a = -1.71. Y = 1.641 mm. 

u’ = 0. This is exactly the effect seen for the rising case in figure 17(b), and again no 
Reynolds-number effect is observed for this quantity, just as noted for the rising event. 

Figures 20(a) and 20(b) are conditioned on the sweep event. Figure 20(a) shows that 
restricting the condition from simple sinking flow to a strong sweep event accentuates 
the presence of an inboard vortex, while the outboard vortex is not detected. The extent 
of the distortion of the streamwise velocity contours is shown in figure 20(b), which 
shows a certain asymmetry in its approach to zero, but lacks the clear asymmetry in 
the overshoot region seen in figure 19(b). The asymmetry of the v’-averaged motion 
suggests that one sign of vortex is more efficient at producing a sweep than the other 
sign, as was concluded for the ejection event above. 
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7. Discussion 
Unfortunately it is usually easier to disprove hypothetical structures than to 

unequivocally demonstrate support for a particular structure model. It was stated 
during the discussion of the ejection condition that all symmetric models, including 
those with even distributions of mirror-imaged asymmetric structures, could not 
produce the two-point velocity correlation presented here. These measurements will 
therefore be interpreted as a description of how the structure described by Robinson 
(1991) might be modified by the presence of spanwise shear. That structure is an arch- 
like vortex which trails behind it a neck inclined at some angle to the wall and a tail 
which extends in a generally streamwise direction parallel to the wall. The sense of 
rotation of the arch is the same as the mean spanwise vorticity of the boundary layer, 
and the neck and tail emanate with equal likelihood from either side of an arch, but 
each arch is generally found to have a tail on one side only. This important feature 
differentiates this model from those based on symmetric horseshoe vortices. Robinson 
(1991) presented this as the consensus view of a shear-stress-producing structure in the 
log region of a 2DTBL from the record of many physical experiments and direct 
numerical simulations. The same general type of structure could be expected in a 
perturbed 2DTBL, such as a turning flow producing a 3DTBL, though it may be 
modified by the extra mean shear. In the rotating reference frame the similarity 
between the disk flow and other 3DTBL’s has been shown by the mean flow and single- 
point statistics to be substantial, and it may thus be inferred that the same type of 
structures would exist in each of these wall-bounded shear flows. 

Following the nomenclature of Shizawa & Eaton (1991) for relating vortex sign to 
the mean crossflow velocity profile, a Case 1 streamwise vortex is that with a secondary 
velocity which augments the crossflow close to the surface, while the Case 2 secondary 
velocity is opposite to the crossflow near the wall. Here we will designate the two 
possible arch orientations as Case 1 and Case 2 structures by virtue of the relationship 
of their streamwise tails with the crossflow. 

Robinson (1991) stated that strong ejections were most commonly found upstream 
of an arch inside a neck, and strong sweeps were found on the outside of the neck. Since 
an arch with a single neck is more common than one with two, the relative spanwise 
location of sweeps and ejections seems to be a likely way to differentiate Case 1 from 
Case 2 in instantaneous two-point velocity correlations. The streamwise location of the 
sweep and ejection are of course not required to be exactly the same, which 
considerably increases the amount of data needed to completely define the structure 
being measured. It will therefore by assumed that on average they occur side-by-side 
for the purposes of this discussion. This is not a major concern for the unconditioned 
two-point correlations, but may have an impact on the applicability of the conditioned 
measurements in a manner which is difficult to predict. 

We are now ready to advance a description of coherent structure modification by 
spanwise shear, based on Robinson’s 2DTBL structure. Like all structural models, 
sufficient information for proof is not available, but the model presented here does fit 
all the peculiar trends noted above. It also has the advantage of being very simple to 
describe, though the dynamic mechanism causing the modification is somewhat harder 
to envision. 

From a combination of evidence of rising and ejection events, we conclude that most 
strong ejections are caused by Case 1 structures as shown in figure 21. Figure 15, RI2, 
shows quite clearly that asymmetries exist in this 3DTBL which are impossible in a 
2DTBL. Two-point correlations conditioned on the presence of Reynolds shear stress 
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FIGURE 21. Shear stress structure of Robinson (1991) with Case 1 neck and tail as modified by 
three-dimensionality . 

were evaluated to see if they caused the asymmetry, and correlations conditioned on 
the presence of simple vertical motion were used to test for streamwise vorticity. Figure 
17(a), (v’lrising), shows that both Case 1 and Case 2 vortices can cause upward 
vertical motion, but figure 18(a), (v’lejection), shows that Case 1 structures are 
responsible for most ejections. Taken together, these support the scenario depicted in 
figure 21, showing that structures with Case 1 necks and tails are responsible for most 
strong ejections. 

Conversely, figure 22 shows the proposed mechanism for production of strong 
sweeps by Case 2 structures, as deduced from the sinking and sweep conditionally 
averaged events. Figure 19(a), (v’lsinking), shows that both Case 1 and Case 2 
vortices can cause vertical motion downward, but figure 20(a), (0’ I sweep), shows that 
Case 2 structures are producing more of the strong sweeps, owing to the lack of upward 
motion outboard of the sweep as would be expected from a Case-1-triggered event. 

The ejection and sweep criteria taken together indicate that the neck of a Case 1 
structure loses its ability to produce a sweep. The relatively weak downward motion 
outboard of the ejection means that the arch of a Case 2 structure is somehow being 
modified and is not producing strong ejections, but is causing sweeps. 

The dynamics of the structural interaction with the crossflow velocity is open to 
interpretation, and could be very different for each unique structure and only average 
out to give the asymmetric behaviour noted here. One possible interpretation involves 
the Case 1 neck and tail (figure 21) simply rolling up the inflexional crossflow velocity 
profile instead of pumping fluid down and producing a strong inboard sweep. This 
rolling up of vorticity would be less likely to disturb, and would probably strengthen, 
the ejection upstream of the arch. If a Case 2 structure interacts with the crossflow, it 
could ruin the ejection upstream of the arch by opposing the secondary flow of the neck 
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FIGURE 22. Shear stress structure of Robinson (1991) with Case 2 neck and tail as modified by 
three-dimensionality . 

on the inboard side, while having a smaller effect on the outboard sweep as shown in 
figure 22. Both of these structure modifications can be summarized as requiring some 
part of the structure to be inboard of the surviving event (sweep or ejection); thus the 
inboard feature ‘protects ’ the outboard event from the crossflow velocity profile. 

8. Summary 
Several sets of mean and turbulent fluctuation measurements were obtained at 

multiple radii and speeds to document the turbulent flow field up to Re, = 6000. The 
present data agreed well with previous mean measurements, and agreed qualitatively 
with the few turbulence measurements available for ‘infinite’ disk flow. It was 
demonstrated that the peak in the crossflow profile does not scale on inner variables, 
but outer-variable scaling could not be established owing to the uncertainty in 
measuring the total boundary-layer thickness. 

It was concluded that the disk boundary layer is dominated by the near-wall region, 
and that in the outer region inactive motions are even more prevalent than in two- 
dimensional boundary layers. The ratio of the shear stress vector magnitude to the 
turbulent kinetic energy, A,,  was at a maximum near the wall at close to the two- 
dimensional value, but dropped off almost linearly away from the wall. The reduction 
in A ,  in the outer region of the disk-flow boundary layer suggests that the modification 
of A ,  observed in 3DTBL’s is not merely a disequilibrium effect. More research is 
needed to determine the generality of this conclusion. The primary shear stress -m 
normalized by the wall friction velocity was seen to have a value of 0.6 at y+ = 110, 
which is considerably lower than in a 2DTBL at the same Reynolds number. This 
indicates a very small, or non-existent, constant Reynolds shear stress region near the 



The boundary layer on a rotating disk 205 

wall. The shear stress vector and the mean flow strain-rate vector were found to be 
closely aligned throughout the boundary layer, as opposed to 3DTBL’s produced by 
strong skewing of a 2DTBL. 

The Reynolds stress transport equation balances showed that the direct effects of 
rotation - (Coriolis effects on the turbulence), are negligible for the primary shear stress 
- __ do’, but make a large contribution to the development of the secondary shear stress 
- zi’w’. Traditional 2DTBL estimates of turbulent lengthscales based on shear stress 
were seen to perform poorly, while those based on turbulent kinetic energy worked 
well. A new model proposed by Hunt et al. (1987) failed badly in its original form based 
on 0’-fluctuations. This was concluded to be a result of the low values of v” found for 
the disk flow. 

Two-point velocity correlations showed quite clearly that strong asymmetries exist 
in this three-dimensional boundary layer so symmetric structure models are 
inappropriate. The structural model of Robinson (1991) consisting of vortical arches 
each with a single quasi-streamwise vortical leg was found to be plausible if interaction 
with the crossflow is taken into account. Conditionally sampled two-point correlations 
showed that structures with a leg on the inboard side of the arch produced strong 
ejections but weakened sweeps. Oppositely signed structures produced strong sweeps 
but weakened ejections. 

The turbulent stress data presented here are limited to the logarithmic and outer 
regions of the boundary layer, as in most other three-dimensional boundary-layer 
experiments. Extension of the Reynolds stress measurements to the near-wall region 
would shed considerable light on the processes at work nearer the peak in the 
production of turbulent kinetic energy. 

Two-point velocity correlations from other three-dimensional boundary layers, 
particularly those based on ‘infinite’ geometries, are needed to evaluate coherent 
structure models as modified by three-dimensionality. Direct numerical simulations 
will probably continue to be the best source of coherent structural information, but 
extension to high Reynolds numbers will require more laboratory experiments into the 
effects of three-dimensionality. 
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